Abstract
Low-level laser could promote osteoblast proliferation, and it has been applied in clinical practice to promote wound healing and tissue regeneration. However, the mechanism related to laser irradiation remains unclear. This study aimed to investigate the effects of low-level laser irradiation on the cell proliferation and the expressions of hedgehog signaling molecules Indian hedgehog (Ihh), Ptch, and Gli in vitro. In our present study, the MTT method was used to evaluate the effect on cell proliferation of laser irradiation on MC3T3-E1 cells. And cell cycle was examined by flow cytometry. Gene and protein expressions of hedgehog signaling molecules, including Ihh, Ptch, Smoothened (Smo), and Gli, were examined by qRT-PCR and western blot analysis. The results showed that laser irradiation at dosage of 3.75 J/cm2 enhances the proliferation of MC3T3-E1 cells compared with control groups (p = 0.00). Moreover, laser irradiation (3.75 J/cm2) increased the cell amount at S phase (p = 0.00). In addition, the expressions of Ihh, Ptch, Smo, and Gli were significantly increased compared to the control during laser irradiation (3.75 J/cm2)-induced MC3T3-E1 osteoblast proliferation. After adding the hedgehog signaling inhibitor CY (cyclopamine), cell proliferation and Ihh, Ptch, Smo, and Gli expressions were inhibited (p = 0.00), and the cell amount at S phase was reduced compared with combination groups (p = 0.00). These results indicated that laser irradiation promotes proliferation of MC3T3-E1 cells through hedgehog signaling pathway. Our findings provide insights into the mechanistic link between laser irradiation-induced osteogenesis and hedgehog signaling pathway.
http://ift.tt/2sbnTHR